Download Quick Currency Converter


Quadratic Formula/ Quadratic Equation Solver Visual Basic, VB.net

Description:Remember Quadratic equation/Quadratic formula from high school maths? Something that solves equation in one variable of the form "x^2 + 2x + 1 = 0". Using this project, you dont need to solve that equation on paper anymore. This project simply asks for three coefficients "a" , "b" , "c" and solves the equation.

Difficulty: Easy

Language: Visual Basic.NET (VB.NET)

Compiler/IDE: Visual Studio



View Source

            							
Module Module1

    Sub Main()

        Dim a, b, c As Single
        Console.WriteLine("Write coefficient 'a'")
        a = Console.ReadLine
        Console.WriteLine("Write coefficient 'b'")
        b = Console.ReadLine
        Console.WriteLine("Write coefficient 'c'")
        c = Console.ReadLine
        
        Dim d As Integer = b ^ 2 - 4 * a * c
        If d >= 0 Then
            If d = 0 Then
                Console.WriteLine("Roots are real and equal")
            Else
                Console.WriteLine("Roots are real and different")
            End If

            Console.Write("Roots are: ")
            Console.Write((-b + d ^ 0.5) / (2 * a) & " , ")
            Console.WriteLine((-b - d ^ 0.5) / (2 * a))

        Else
            Console.WriteLine("Roots are complex")
            Console.Write("Roots are: ")
            Console.Write(-b / (2 * a) & "+" & (d * -1) ^ 0.5 / (2 * a) & "i")
            Console.Write(" , ")
            Console.WriteLine(-b / (2 * a) & "-" & (d * -1) ^ 0.5 / (2 * a) & "i")

        End If
        Console.ReadLine()

    End Sub

End Module


Notes:This project uses the quadratic formula: " (-b + (sqrt( b^2 - 4ac )) / 2a) " and " (-b -( sqrt(b^2 - 4ac)) / 2a) " for solving the roots of the equation, where "sqrt" represents "Square Root". For complex roots, it displays the roots in proper notation using "i" as the imaginary variable.